Статистика - материалы курса Л.И.Бородкина для подготовки к экзамену

ISKUNSTvo

[Материалы для студентов-историков]

Rambler's Top100 Рейтинг@Mail.ru

1.                  Предмет математической статистики, её основные разделы. Понятие о статистическом распределении. Нормальное распределение. В каких условиях случайная величина распределена нормально?

Статистика – наука, узучающая совокупн. масс. явл-я с целью выявления закономерн. и изуч-я их с помощью обобщенных показателей. Все методы математической статистики можно отнести к двум основным ее разделам: теории статистического оценивания параметров и теории проверки статистических гипотез.

Разделы:

1. дескриптивная статистика

2. выборочный метод, доверительные интервалы

3. корреляционный анализ

4. регрессионный анализ

5. анализ качественных признаков

6. многомерный статистический анализ:

а) кластерный

б) факторный

7. анализ временных рядов

8. дифференциальные уравнения

9. математическое моделирование исторических процессов

Распределение:

- теоретическое (бесконечно много объектов и они ведут себя идеально)

- эмпирическое (реальные данные, которые можно выстроить в гистограмму)

Нормальное распределение – когда характер распределения влияют много факторов, и ни один из них не является определяющим. Особенно часто используется на практике.

Нормальное распределение можно изобразить графически в виде симметричной одновершинной кривой, напоминающей по форме колокол. Высота (ордината) каждой точки этой кривой показывает, как часто встречается соответствующее значение.

2.                  Дескриптивная статистика. Средние значения — среднее арифметическое, медиана, мода. В каких ситуациях эти три меры дают близкие значения, а в каких они сильно различаются?

Дескриптивная статистика  - Это описательная статистика.

среднее арифметическое, медиана, мода – меры среднего – коэф-ты, которые могут охарактеризовать совокупность объектов

·      среднее (арифметическое) значение ‑ сумма всех значений, отнесенная к общему числу наблюдений (принятые обозначения: Mean или ), т.е. средним арифметическим значением признака  называется величина

,

где  - значение признака у i-го объекта, n - число объектов в совокупности.

·      мода – наиболее часто встречающееся значение переменной (M)

·      медиана – среднее по порядку значение (принятые обозначения: Median, m). Медиана - это "серединное" значение признака в том смысле, что у половины объектов совокупности значения этого признака меньше, а у другой половины - больше медианы. Приближенно вычислить медиану можно, упорядочив все значения признака по возрастанию (убыванию) и найдя число в этом вариационном ряду, которое либо имеет номер (n+1)/2 - в случае нечетного n, либо находится посередине между числами с номерами n/2 и (n+1)/2 - в случае четного n.

Не все из перечисленных характеристик можно вычислять для качественных признаков. Если признак качественный и номинальный, то для него можно найти только моду (ее значением будет название наиболее часто встречающейся категории номинального признака). Если признак ранговый, то кроме моды для него можно найти еще и медиану. Среднее арифметическое значение можно вычислять только для количественных признаков.

В случае количественных данных все характеристики среднего уровня измеряются в тех же единицах, что и сам исходный признак.

Значения коэф-тов совпадают, если график распределения симметричен.

·      среднее квадратическое или стандартное отклонение ‑ мера разброса значений признака около среднего арифметического значения (принятые обозначения: Std.Dev. (standard deviation), s или s). Величина этого отклонения вычисляется по формуле

.

·      дисперсия признака (s2 или s2)

·      коэффициент вариации ‑ отношение стандартного отклонения к среднему арифметическому, выраженное в процентах (обозначается в статистике буквой V). Коэффициент вычисляется по формуле: .

Все эти меры  можно вычислять только для количественных признаков. Все они показывают, насколько сильно варьируют значения признака (а точнее - их отклонения от среднего) в данной совокупности. Чем меньше значение меры разброса, тем ближе значения признака у всех объектов к своему среднему значению, а значит, и друг к другу. Если величина меры разброса равна нулю, значения признака у всех объектов одинаковы.

Наиболее часто используется среднее квадратическое (или стандартное) отклонение s. Оно измеряется, как и среднее арифметическое, в тех же единицах, что и сам исходный признак. При изменении всех значений признака в несколько раз, точно так же изменится и стандартное отклонение, однако если все значения признака увеличить (уменьшить) на некоторую величину, его стандартное отклонение не изменится. Наряду со стандартным отклонением часто пользуются дисперсией (=его квадрату), однако на практике она является менее удобной мерой, т.к. единицы измерения дисперсии не соответствуют единицам измерения.

Смысл коэффициента вариации состоит в том, что он, в отличие от s, измеряет не абсолютную, а относительную меру разброса значений признака в статистической совокупности.

            Чем больше V, тем совокупность менее однородна.

Однородная                        Переходная                                     Неоднородная

V=0 – 30%                          V=30 – 50%                                    V=50 – 100%

Может быть »100% (слишком неоднородная совокупность).

Выборка - Это множество объектов из генеральной совокупности (всего множества объектов, св-ва которых нужно изучить), свойства которых мы измеряем и обрабатываем для того, чтобы иметь представление о свойствах генеральной совокупности.

Выборка:

- репрезентативная

- случайная

Механическая выборка – сходна со случайной выборкой (кажд. 10й, 20й и т.п.).

+ естественная(то, что осталось от ГС с течением времени) выборки.

Репрезентативная выборка – точно отражает свойства генеральной совокупности.

Чтобы выборка правильно отражала основные свойства, присущие генеральной совокупности, она должна быть случайной, т.е. все объекты генеральной совокупности должны иметь равные шансы попасть в выборку

Выборки формируются с помощью спец. методик. Наиболее простым является случайный отбор, например, при помощи обычной жеребьевки (для небольших совокупностей) или с использованием таблиц случайных чисел. Для более обширных, но достаточно однородных совокупностей используется механический отбор (применявшийся еще в земской статистике). Для неоднородных совокупностей с определенной структурой чаще применяется типический отбор. Существуют и другие методы, в том числе - комбинации разных способов отбора на нескольких этапах построения выборочной совокупности.

В выборочных результатах всегда присутствуют ошибки. Эти ошибки можно разделить на два класса: случайные и систематические. К первым относятся случайные отклонения выборочных характеристик от генеральных, обусловленные самой природой выборочного метода. Величина случайной ошибки поддается вычислению (оценке). Систематические ошибки, наоборот, не носят случайного характера; они связаны с отклонением структуры выборки от реальной структуры генеральной совокупности. Систематические ошибки появляются тогда, когда нарушается основное правило случайного отбора - обеспечение для всех объектов равных шансов поапсть в выборку. Ошибки этого рода статистика не умеет оценивать.

Основными источниками систематических ошибок являются: а) неадекватность сформированной выборки задачам исследования; б) незнание характера распределения в генеральной совокупности и, как следствие, нарушение в выборке структуры генеральной совокупности; в) сознательный отбор наиболее удобных и выигрышных элементов генеральной совокупности.

Доверительная вероятность – вероятность того, что значение рассчитываемого коэф-та для ген. Совокупности попадет в доверительный интервал. Чеи больше ДВ, тем больше ДИ.

Доверительный интервал -  тот значений рассчитываемого коэф-та, в к-й, мы считаем,должно попасть это значение для ген. Совокуп-ти.

Доверительная вероятность – вероятность того, что значение рассчитываемого коэф-та для ген. Совокупности попадет в доверительный интервал. Чеи больше ДВ, тем больше ДИ.

Неизбежный разброс выборочных средних вокруг генеральной средней (т.е. стандартное отклонение выборочных средних) называется стандартной ошибкой выборки m, которая выражается формулой  (s - среднее квадратическое отклонение, n - объем выборки). стандартная ошибка выборки тем меньше, чем меньше величина s (которая характеризует разброс значений признака) и чем больше объем выборки n.

Если выборочный метод используется для работы с неколичественными данными, то роль среднего арифметического значения в совокупности играет доля или частота q признака. Доля вычисляется как отношение числа объектов, обладающих данным признаком (), к числу объектов во всей совокупности: . Роль меры разброса играет величина .

В этом случае стандарная ошибка выборки m вычисляется по формуле:

.

Точность и надежность оценки параметров генеральной совокупности по выборке находятся в обратной зависимости: чем больше точность (т.е. чем меньше предельная ошибка и чем уже доверительный интервал), тем меньше надежность такой оценки (степень уверенности). И наоборот - чем ниже точность оценки, тем выше ее надежность. Часто доверительный интервал строят для надежности 95%, соответственно предельная ошибка выборки обычно равна удвоенной средней ошибке m..

Доверительный интервал для оценки среднего значения в генеральной совокупности:

X(г.с.) = x(выб.) +-Δ = x(выб.) +- = X(выб.) +- σ(г.с.)/√n

Критерий для разности средних значений

Часто возникает задача сравнения двух выборочных средних с целью проверки гипотезы о том, что эти выборки получены из одной и той же генеральной совокупности, а реальные расхождения в значениях выборочных средних объясняются случайностями выборок.

Испытуемую гипотезу можно сформулировать следующим образом: различие между выборочными средними случайно, т.е. генеральные средние в обоих случаях равны. В качестве статистической характеристики снова используется величина t, предсталяющая собой разность выборочных средних, деленную на усредненную стандартную ошибку среднего по обеим выборкам.

Фактическое значение статистической характеристики сравнивается с критическим значением, соответсвующим выбранному уровню значимости. Если фактическое значение больше, чем критическое, испытуемая гипотеза отклоняется, т.е. различие между средними считается значимым (существенным).

Коэффициент корреляции показывает, насколько тесно две переменных связаны между собой.

Коэффициент корреляции r принимает значения в диапазоне от -1 до +1. Если r = 1, то между двумя переменными существует функциональная положительная линейная связь, т.е. на диаграмме рассеяния соответствующие точки лежат на одной прямой с положительным наклоном. Если r = -1, то между двумя переменными существует функциональная отрицательная зависимость. Если r = 0, то рассматриваемые переменные линейно независимы, т.е. на диаграмме рассеяния облако точек "вытянуто по горизонтали".

Уравнение регрессии и коэффициент корреляции целесообразно вычислять лишь в том случае, когда зависимость между переменными может хотя бы приближенно считаться линейной. В противном случае результаты могут быть совершенно неверными, в частности коэффициент корреляции может оказаться близким к нулю при наличии сильной взаимосвязи. В особенности это характерно для случаев, когда зависимость имеет явно нелинейный характер (например, зависимость между переменными приблизительно описывается синусоидой или параболой). Во многих случаях эту проблему можно обойти, преобразовав исходные переменные. Однако, чтобы догадаться о необходимости подобного преобразования, т.е. для того чтобы узнать, что данные могут содержать сложные формы зависимости, их желательно “увидеть”. Именно поэтому исследование взаимосвязей между количественными переменными обычно должно включать просмотр диаграмм рассеяния.

Коэффициенты корреляции можно вычислять и без предварительного построения линии регрессии. В этом случае вопрос о интерпретации признаков как результативных и факторных, т.е. зависимых и независимых, не ставится, а корреляции понимается как согласованность или синхронность одновременного изменения значений признаков при переходе от объекта к объекту.

Если объекты характеризуются целым набором количественных признаков, можно сразу построить т.н. матрицу корреляции, т.е. квадратную таблицу, число строк и столбцов которой равно числу признаков, а на пересечении каждых строки и столбца стоит коэффициент корреляции соответствующей пары признаков.

Коэффициент корреляции не имеет содержательной интерпретации. Однако его квадрат, называемый коэффициентом детерминации (R2), имеет.

Коэффициентом детерминации (R2) – это показатель того, насколько изменения зависимого признака объясняются изменениями независимого. Более точно, это доля дисперсии независимого признака, объясняемая влиянием зависимого.

Если две переменные функционально линейно зависимы (точки на диаграмме рассеяния лежат на одной прямой), то можно сказать, что изменение переменной y полностью объясняется изменением переменной x, а это как раз тот случай, когда коэффициент детерминации равен единице (при этом коэффициент корреляции может быть равен как 1, так и -1). Если две переменные линейно независимы (метод наименьших квадратов дает горизонтальную прямую), то переменная y своими вариациями никоим образом "не обязана" переменной x – в этом случае коэффициент детерминации равен нулю. В промежуточных случаях коэффициент детерминации указывает, какая часть изменений переменной y объясняется изменением переменной x (иногда удобно представлять эту величину в процентах).

Регрессионный анализ - Статистический метод, позволяющий строить объясняющие модели на основе взаимодействия признаков.

Самым простым случаем взаимосвязи является парная взаимосвязь, т.е. связь между двумя признаками. При этом предполагается, что взаимосвязь двух переменных носит, как правило, причинный характер т.е. одна из них зависит от другой. Первая (зависимая) называется в регрессионном анализе результирующей, вторая (независимая) - факторной. Следует заметить, что не всегда можно однозначно определить, какая из двух переменных является независимой, а какая - зависимой. Часто связь может рассматриваться как двунаправленная.

Уравнение парной регрессии: y = kx + b.

Чаще всего на зависимую переменную действуют сразу несколько факторов, среди которых трудно выделить единственный или главный Так, к примеру, доход предприятия зависит одновременно от двух факторов производства - числа рабочих и энерговооруженности. Причем оба этих фактора сами не являются независимыми друг от друга.

Уравнение множественной регрессииy = k1·x1 + k2·x2 + … + b,

где x1, x2, . . . – независимые переменные, от которых в той или иной степени зависит исследуемая (результирующая) переменная y;

k1, k2 . . . – коэффициенты при соответствующих переменных (коэффициенты регрессии), показывающие, насколько изменится значение результирующей переменной при изменении отдельной независимой переменной на единицу.

Уравнение множественной регрессии задает регрессионную модель, объясняющую поведение зависимой переменной. Никакая регрессионная модель не в состоянии указать, какая переменная является зависимой (следствием), а какие – независимыми (причинами).

R – множественный коэф. корреляции, измеряет совокупность воздействия независимых признаков, тесноту связи результирующего признака со всей совокупностью независимых признаков, выраженных в %.

Показывает какова доля учтенных признаков в отделении результата, т.е. на сколько % вариация признака у объясняется вариациями учтенных признаков Х1, Х2, Х3.

Содержательный смысл коэффициента регрессии – коэф.регрессии b показывает, на сколько в среднем изменится результирующий признак у при увеличении независимого признака х на ед-цу измерения. Не может быть = 0.

T-статистика показывает уровень стат. значимости кажд. ккоэф-та регресии, т.е. его устойчивость по отношению к выборке.

T = b/Δb Статистически значимыми явл-ся t>2. Чем больше коэф-т,  тем лучше.

через R² мы делаем заключение о том, на сколько % учтенные признаки объясняют результат.

Многомерный статистический анализ. Его цель: построение упрощенного укрупненного ряда объектов.

МСА:

- кластерный анализ

- факторный анализ

- многомерное шкалирование

Кластерный анализ – объединение объектов в группу с единой целью (признаков много).

Способы кластерного анализа:

1.      иерархический (дерево иерархического анализа):

Oсновная идея  иерархического метода заключается в последовательном объединении группируемых объектов - сначала самых близких, а затем все более удаленных друг от друга. Процедура построения классификации состоит из последовательных шагов, на каждом из которых производится объединение двух ближайших групп объектов (кластеров).

2. метод К-средних.

Требует заранее заданных классов (кластеров). Подчеркивает внутриклассовую дисперсию. основан на гипотезе о наиболее вероятном количестве классов. Задачей метода является построение заданного числа кластеров, которые должны максимально отличаться друг от друга.

Процедура классификации начинается с построения заданного числа кластеров, полученных путем случайной группировки объектов. Каждый кластер должен состоять из максимально "похожих" объектов, причем сами кластеры должны быть максимально "непохожими" друг на друга.

Результаты этого метода позволяют получить центры всех классов (а также и другие параметры дескриптивной статистики) по каждому из исходных признаков, а также увидеть графическое представление о том, насколько и по каким параметрам различаются полученные классы.

Многомерный статистический анализ. Его цель: построение упрощенного укрупненного ряда объектов.

МСА:

- кластерный анализ

- факторный анализ

- многомерное шкалирование

В основе факторного анализа лежит идея о том, что за сложными взаимосвязями явно заданных признаков стоит относительно более простая структура, отражающая наиболее существенные черты изучаемого явления, а "внешние" признаки являются функциями скрытых общих факторов, определяющих эту структуру.

Цель: переход от большего числа признаков к небольшому числу факторов.

в факторном анализе все величины, входящие в факторную модель, стандартизированы, т.е. являются безразмерными величинами со средним арифметическим значением 0 и средним квадратическим отклонением 1.

Коэффициент взаимосвязи между некоторым признаком и общим фактором, выражающий меру влияния фактора на признак, называется факторной нагрузкой данного признака по данному общему фактору. Это число в интервале от -1 до 1. Чем дальше от 0, тем более сильная связь. Значение факторной нагрузки по некоторому фактору, близкое к нулю, говорит о том, что этот фактор практически на данный признак не влияет.

Значение (мера проявления) фактора у отдельного объекта называется факторным весом объекта по данному фактору. Факторные веса позволяют ранжировать, упорядочить объекты по каждому фактору. Чем больше факторный вес некоторого объекта, тем больше в нем проявляется та сторона явления или та закономерность, которая отражается данным фактором. Факторы являются стандартизованными величинами, не могут быть = нулю. Факторные веса, близкие к нулю, говорят о средней степени проявления фактора, положительные – о том, что эта степень выше средней, отрицательные – о том. что она ниже средней.

Таблица факторных весов имеет n строк по числу объектов и k столбцов по числу общих факторов. Положение объектов на оси каждого фактора показывает, с одной стороны, тот порядок, в котором они ранжированы по этому фактору, а с другой стороны, равномерность или же неравномерность в их расположении, наличие скоплений точек, изображающих объекты, что дает возможность визуально выделять более или менее однородные группы.

Качественные (или категориальные) данные делятся на два типа: ранговые и номинальные.

Номинальные данные  представлены категориями, для которых порядок абсолютно не важен. Для них не определен никакой другой способ сравнения, кроме как на буквальное совпадение/несовпадение.

Примеры номинальных переменных:

·      Национальность: англичанин, белорус, немец, русский, японец и пр.

·      Род занятий: служащий, врач, военный, учитель и т.д.

·      Профиль образования: гуманитарное, техническое, медицинское, юридическое и т.д.

Если в случае с уровнем образования мы еще могли сравнивать людей в терминах "лучше-хуже" или "выше-ниже", то теперь мы лишены даже этой возможности; единственный корректный способ сравнения ‑ это говорить, что данные персоналии "все являются историками", или "все не являются юристами".

Таблицы сопряженности

Таблицей сопряженности называется прямоугольная таблица, по строкам которой указываются категории одного признака (например, разные социальные группы), а по столбцам - категории другого (например, партийная принадлежность). Каждый объект совокупности попадает в какую-либо из клеток этой таблицы в соответствии с тем, в какую категорию он попадает по каждому из двух признаков. Таким образом, в клетках таблицы стоят числа, представляющие собой частоты совместной встречаемости категорий двух признаков (число людей, принадлежащих конкретной социальной группе и входящих в определенную партию). В зависимости от характера распределения этих частот внутри таблицы можно судить о том, существует ли связь между признаками. Что означает связь между социальным статусом и партийной принадлежностью? В данном случае о наличии связи свидетельствовало бы наличии определенных политических пристрастий у членов разных социальных групп. Формально говоря, эта связь понимается как более частая (или наоборот, редкая) совместная встречаемость отдельных комбинаций категорий по сравнению с ожидаемой встречаемостью - ситуацией чисто случайного попадания объектов туда (например, более высокая доля крестьян в партии трудовиков, а дворян - в партии кадетов, чем доли этих социальных групп во всей совокупности депутатов Думы).

Качественные (или категориальные) данные делятся на два типа: ранговые и номинальные.

Ранговые данные представлены категориями, для которых можно указать порядок, т.е. категории сравнимы по принципу "больше-меньше" или "лучше-хуже".

Примеры ранговых переменных:

·      Оценки на экзаменах имеют явно выраженную ранговую природу и выражаются категориями типа: "отлично", "хорошо", "удовлетворительно" и т.д.

·      Уровень образования может быть представлен как набор категорий: "высшее", "среднее" и т.п.

Несомненно, мы можем ввести ранговую шкалу и с ее помощью упорядочить всех людей, для которых мы знаем их уровень образования или балл на экзамене. Однако, верно ли, что оценка "хорошо" на столько же хуже, чем "отлично", насколько оценка "удовлетворительно" хуже, чем "хорошо"? Несмотря на то, что формально, в случае с оценками, можно получить разницу в баллах, вряд ли корректно измерять расстояние от "отличника" до "хорошиста" пользуясь теми же правилами, что для расстояния от Москвы до Петербурга. В случае с уровнем образования особенно отчетливо видно, что простые вычисления невозможны, поскольку не существует единого правила вычитания "среднего" уровня образования из "высшего", даже, если мы присвоим высшему образованию код "3", а среднему – код "2".

Меры взаимосвязи между парой признаков, каждый из которых ранжирует изучаемую совокупность объектов, называются в статистике коэффициентами ранговой корреляции.

Эти коэффициенты строятся на основе следующих трех свойств:

·        если ранжированные ряды по обоим признакам полностью совпадают (т.е. каждый объект занимает одно и то же место в обоих рядах), то коэффициент ранговой корреляции должен быть равен +1, что означает полную положительную корреляцию:

·        если объекты в одном ряду расположены в обратном порядке по сравнению со вторым, коэффициент равен -1, что означает полную отрицательную корреляцию;

·        в остальных ситуациях значения коэффициента заключены в интервале [-1, +1]; возрастание модуля коэффициента от 0 до 1 характеризует увеличение соответствия между двумя ранжированными рядами.

Указанными свойствами обладают коэффициенты ранговой корреляции Спирмена r и Кедалла t.

Коэффициент Кедалла дает более осторожную оценку корреляции, чем коэффициент Спирмена (числовое значение t всегда меньше, чем r).

Коэффициенты взаимосвязи качественных признаков

Для оценки связи качественных признаков необходим коэффициент, к-й имел бы определенный максимум в случае максимальной связи и позволял бы сравнивать между собой разные таблицы по силе связи между признаками. В данном случае нам подходит коэффициент Крамера V.

Базируясь на значении критерия хи-квадрат, коэффициент Крамера позволяет измерять силу связи между двумя категоризованными переменными - измерить ее числом, принимающим значения от 0 до 1, т.е. от полного отсутствия связи до максимальной сильной связи. Коэффициент позволяет сравнить зависимости разных признаков, с тем, чтобы выявить более и менее сильные связи.

13. Математическое моделирование.

Специфика задач моделирования:

1.      история не занимается прогнозированием

2.      нет основательных рядов данных, массивов, по которым можно настраивать модель, ограниченность данных

3.      комплексная наука (от культуры до экономики).

Причины применения моделей в ист.исследованиях:

1.      реконструкция отсутствующих данных по динамике процесса (Пелопонесские войны)

2.      оценка роли тех или иных факторов в их действии на результат процесса, проверка предположений

3.      теоретический анализ ситуаций.

Модели бывают разных типов (от вербальных до математических). Философские, натурные и др.

Цель моделирования – заменить реальный объект исследования его моделью, а затем исследовать поведение модели, перенося выводы на объект.

Главный вопрос – адекватность модели изучаемому объекту (изоморфность).

Математическая модель – система уравнений, в которой конкретные величины заменяются математически понятными постоянными и переменными величинами, функциями. Для этого применяются дифференциальные, интегральные и алгебраические уравнения.

Система математических соотношений, описывающих изучаемый процесс или явление; в общем смысле такая модель является множеством символических объектов и отношений между ними. (Г.И.Рузавин).

Типы моделей:

(связаны с ситуациями применения моделей)

- имитационные (имитирует характер процесса, допускается много переменных х и уравнений, сложная форма взаимосвязи между ними.

Пример: системы конечно-разностных уравнений)

- статистические (малое число уравнений, большое число переменных, сложные связи между ними, обратные связи трудны для исследования.

Пример: уравнения множественной регрессии, факторный анализ)

- аналитические (математические, одно или несколько уравнений и простая связь между ними.

Пример: дифференциальные уравнения, марковские цепи)

Эти три подхода, вообще говоря, приводят исследователя к построению различных типов теорий. Там, где используется аналитическое моделирование, имеются небольшие возможности для анализа поведения систем с нелинейными или обратными связями. Когда выбрано статистическое моделирование, мы вынуждены оценивать параметры модели из уравнений. Такие модели также имеют ограниченное применение в случае наличия обратных связей. Если используется имитационное моделирование, тогда мы относительно свободны от математических или статистических ограничений. Это может быть чрезвычайно полезно для построения теории: есть возможность учитывать сложные обратные и нелинейные связи. Однако, в этом случае мы ограничены в понимании изучаемой системы пределами экспериментирования с моделью.

Модель Мальтуса – в 18 в. предсказал, что будет перенаселение. Но он не учел, что есть механизмы саморегулирования.

Лотка и Вольтера – модель «хищник-жертва».

14. Дифференциальные уравнения.

Построение модели, и ее изучение – "прогон" во времени, оценка роли различных факторов, выявление закономерностей – наиболее эффективно осуществляются с помощью формальных методов, например, разностных или дифференциальных уравнений.

Дифференциальное уравнение – связывает между собой независимую переменную х, искомую функцию у и ее производную различных порядков по х. Часто роль независимой переменной играет время t.

Д.У. описывает, в отличие от разностного уравнения, динамику процесса в каждый момент времени.

Общий вид дифференциального уравнения n-го порядка:

F(x, y, y', y'', …, ) = 0.

Порядок старшей производной определяет порядок уравнения. Например, уравнение y' + y = x имеет порядок 1, уравнение y'' + y'+2y = 0 – порядок 2, уравнение y''' + y'yx =0 – порядок 3.

Дифференциальное уравнение называется линейным, если неизвестная функция y и ее производные входят в уравнение в первой степени, т.е. с коэффициентами, зависящими только от x, т.е. это уравнение вида:

По аналогии с обычным линейным уравнением функции   …,  называются коэффициентами уравнения, а правая часть, т.е. функция  – свободным членом. Наиболее простыми из линейных уравнений являются т.н. однородные линейные уравнения, в которых =0.

Любая функция , которая, будучи подставлена в дифференциальное уравнение, обращает его в тождество, называется решением этого уравнения. Таким образом, решить дифференциальное уравнение – значит найти все его решения.

Напомним (см. раздел 12.5), что основная задача интегрального исчисления – нахождение функции у, производная которой равна некоторой функции . Оказывается, что эта задача сводится как раз к простейшему дифференциальному уравнению вида y' = f(x). Из интегрального исчисления известно, что общим решением этого уравнения является неопределенный интеграл

,

где С – произвольная константа. Выбирая различные значения С, можно получить любое частное решение этого уравнения. Чем выше порядок уравнения, тем больше констант входит в его общее решение: в решении уравнения второго порядка – две константы, третьего – три, n-го порядка – n.

Наиболее интересны дифференциальные уравнения, описывающие динамические системы, где в качестве независимой переменной выступает время t. Такие системы используются для описания эволюционных процессов.

Модель Мальтуса – в 18 в. предсказал, что будет перенаселение. Но он не учел, что есть механизмы саморегулирования.

Лотка и Вольтерра – модель «хищник-жертва».